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Abstract. The mining industry faces increasing complexity in managing projects due to the need for precise plan-
ning, efficient execution, and rigorous monitoring to ensure safety, productivity, and environmental compliance, yet inte-
grating diverse data sources into a cohesive framework remains a challenge. This article examines the integration of
mine surveying data into Building Information Modeling (BIM) systems as a transformative approach to enhance the
management of mining projects, focusing on open-pit and underground operations. The study tackles the challenges of
combining geospatial data from LIDAR, GPS, and drone-based photogrammetry with geotechnical data from borehole
logging into BIM frameworks to improve project planning, execution, and monitoring in the mining industry. By leveraging
advanced surveying technologies, such as high-precision total stations and laser scanning, alongside BIM tools like
Autodesk Revit and Bentley OpenRoads, the proposed methodology facilitates real-time data integration, enabling better
decision-making and operational efficiency. The research adopts a mixed-methods approach, incorporating case studies
of a copper open-pit mine and a coal underground mine, alongside software simulations in platforms like Agisoft
Metashape for modeling, to evaluate the effectiveness of the integration process. Results demonstrate significant im-
provements, including a 15-20% increase in project accuracy through precise geological modeling, a 10-12% en-
hancement in cost estimation by reducing budget overruns, and a 30% improvement in risk management by identifying
high-risk zones like unstable slopes. Challenges such as data interoperability issues between surveying formats and BIM
platforms, as well as the high initial cost of software and training, were noted. The article concludes with practical rec-
ommendations for implementing BIM in mining, such as phased adoption and staff training programs, and outlines pro-
spects for future research, including automation of data workflows using robotic process automation and Al-driven ana-
lytics for predictive risk assessment, aiming to further streamline operations and enhance safety in mining projects.

Keywords: mine surveying, BIM (Building Information Modeling), mining project management, geospatial data, ge-
otechnical data, data integration, digital twins, modeling, real-time monitoring, operational efficiency.

1. Introduction

The mining industry has long been a cornerstone of global economic develop-
ment, providing essential raw materials for various sectors. However, the complexity
of mining operations, coupled with the need for precision, safety, and efficiency, ne-
cessitates advanced tools and methodologies for project management. Among these,
the integration of mine surveying data into Building Information Modeling (BIM)
systems represents a transformative approach to addressing the challenges of modern
mining projects [1-5]. This section introduces the concepts of mine surveying and
BIM, reviews theoretical foundations, discusses challenges in mining project man-
agement, and outlines the rationale and objectives for integrating these technologies.

Mine surveying is a specialized branch of surveying that focuses on the measure-
ment, representation, and management of geospatial and geotechnical data in mining
environments. It plays a critical role in ensuring the accurate planning, execution, and
monitoring of mining operations. Geospatial data, such as topography, coordinates,
and spatial relationships of mine features, are typically collected using advanced
technologies like LiDAR (Light Detection and Ranging) [6, 7], GPS (Global Posi-
tioning System) [8, 9], and drone-based photogrammetry. Geotechnical data, includ-
ing soil and rock properties, are obtained through borehole logging, laboratory test-
ing, and in-situ measurements. These datasets provide the foundation for designing
mine layouts, assessing geological risks, and ensuring operational safety.
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The primary objectives of mine surveying include creating precise models of min-
ing sites, monitoring ground stability, and supporting resource estimation. Historical-
ly, mine surveying relied on manual methods, such as theodolites and tape measures,
which were time-consuming and prone to errors. Modern surveying technologies
have significantly improved accuracy and efficiency, enabling the collection of high-
resolution data in real time. However, the challenge remains in effectively integrating
and utilizing this data within a cohesive framework to support decision-making
throughout the mining project lifecycle.

Building Information Modeling is a digital framework that facilitates the creation,
management, and sharing of structured data for construction and infrastructure pro-
jects [10]. BIM involves the development of models that integrate geometric, spatial,
and non-geometric data (e.g., material properties, costs, and schedules) to support
project planning, design, construction, and operation. Unlike traditional 2D drawings,
BIM models are dynamic and data-rich, enabling stakeholders to visualize projects,
simulate scenarios, and optimize workflows.

While BIM has been widely adopted in the architecture, engineering, and con-
struction (AEC) industries, its application in mining is relatively new but rapidly
gaining traction. In the mining context, BIM can be used to create digital twins—
virtual replicas of physical mining assets—that integrate geospatial, geotechnical, and
operational data. These digital twins enable real-time monitoring, predictive mainte-
nance, and enhanced collaboration among project teams. The adaptability of BIM to
handle complex datasets and its potential to streamline project management make it a
promising tool for the mining industry.

The integration of mine surveying data into BIM models builds on a growing
body of literature exploring BIM adoption in non-traditional sectors, including min-
ing. Zhao, X. (2017) [11] define BIM as a collaborative process that enhances data
interoperability and lifecycle management, reducing inefficiencies in project delivery.
In the mining context, Fiamma, P. (2019) [12] highlights the potential of BIM to in-
tegrate geospatial data from LiDAR and drone surveys into models, improving the
accuracy of mine planning. Fiamma, P. and Biagi, S. (2023) [13] emphasize the role
of BIM in creating digital twins for real-time monitoring of mining operations, par-
ticularly in underground mines.

Data interoperability is a key focus of BIM research. The Industry Foundation
Classes (IFC) standard, as outlined in ISO 16739-1:2018, provides a framework for
exchanging data between different software platforms, ensuring that mine surveying
data can be seamlessly integrated into BIM models. Additionally, studies by Lu, Z.
(2024) [14] demonstrate the benefits of BIM in lifecycle management, including cost
estimation, risk assessment, and maintenance planning. These theoretical advance-
ments underscore the feasibility of applying BIM to mining, provided that challenges
related to data compatibility and technical expertise are addressed.

Mining projects are inherently complex, involving multiple stakeholders, large-
scale operations, and significant environmental and safety considerations. One of the
primary challenges in mining project management is the presence of data silos, where
geospatial, geotechnical, and operational data are stored in disparate systems, hinder-
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ing collaboration and decision-making. For example, surveyors may use specialized
software for processing LiDAR data, while engineers rely on separate platforms for
design and analysis, leading to inefficiencies and potential errors.

Inaccurate cost estimations are another critical issue. Traditional surveying meth-
ods often fail to capture the full complexity of mining sites, resulting in underestima-
tions of material volumes, equipment needs, or project timelines. This can lead to
budget overruns and delays, which are particularly costly in the capital-intensive min-
ing industry. Safety risks also pose a significant challenge, as outdated or incomplete
surveying data can obscure geological hazards, such as unstable rock formations or
fault lines, endangering workers and equipment [15, 16].

The reliance on manual or semi-automated surveying methods exacerbates these
challenges. While modern technologies like LIDAR and drones have improved data
collection, the lack of a unified platform to integrate and analyze this data limits its
utility. As a result, mining companies often struggle to achieve the level of precision
and efficiency required to remain competitive in a global market.

The integration of mine surveying data into BIM models offers a solution to these
challenges by creating a centralized, data-rich platform for managing mining projects.
By combining geospatial and geotechnical data with BIM’s modeling and lifecycle
management capabilities, mining companies can develop digital twins that provide a
comprehensive view of their operations. These digital twins enable stakeholders to
visualize mine layouts, simulate excavation scenarios, and monitor ground conditions
in real time, leading to better-informed decisions.

The rationale for this integration is threefold. First, it enhances data interoperabil-
ity, breaking down silos and enabling seamless collaboration among surveyors, engi-
neers, and project managers. Second, it improves accuracy and efficiency by leverag-
ing BIM’s advanced visualization and analysis tools, reducing errors in planning and
execution. Third, it supports proactive risk management by providing real-time in-
sights into geological and operational conditions, thereby enhancing safety and sus-
tainability. The creation of digital twins also aligns with the broader trend of digital
transformation in the mining industry, where technologies like IoT (Internet of
Things), Al, and cloud computing are driving innovation.

The primary objective of this study is to propose a framework for integrating
mine surveying data into BIM models to enhance the management of mining projects.
Specifically, the study aims to:

1. Develop a standardized protocol for converting geospatial and geotechnical da-
ta into BIM-compatible formats, ensuring interoperability across software platforms.

2. Evaluate the impact of BIM integration on key project outcomes, including ac-
curacy, cost estimation, and operational efficiency.

3. Identify the challenges and limitations of implementing BIM in mining, with
recommendations for overcoming them.

4. Explore the potential of real-time data streaming and digital twins to support
dynamic monitoring and decision-making in mining operations.

By achieving these objectives, the study seeks to contribute to the growing body
of knowledge on BIM applications in mining and provide practical guidance for in-
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dustry practitioners. The proposed framework is expected to serve as a blueprint for
mining companies seeking to modernize their project management practices and
achieve sustainable, cost-effective outcomes.

2. Methods

The integration of mine surveying data into Building Information Modeling sys-
tems for mining project management requires a robust and scientifically grounded
methodology. This study employs a mixed-methods approach, combining qualitative
and quantitative techniques to ensure comprehensive analysis and validation of the
proposed integration framework. The research leverages advanced data collection
methods, state-of-the-art BIM tools, and innovative scientific contributions to address
the challenges of interoperability, real-time monitoring, and predictive analytics in
mining. This section details the research methods, including the mixed-methods ap-
proach, data collection strategies, BIM tools, scientific novelties, case study selection,
and simulation setup.

To thoroughly investigate the integration of mine surveying data into BIM mod-
els, this study adopts a mixed-methods approach, combining qualitative and quantita-
tive research techniques. The qualitative component involves case studies of real-
world mining projects, which provide in-depth insights into the practical challenges
and benefits of BIM integration. These case studies allow for a contextual under-
standing of how the proposed framework performs in diverse mining environments,
capturing stakeholder perspectives and operational nuances.

The quantitative component consists of software simulations designed to measure
the efficiency, accuracy, and scalability of the integration process. By simulating data
workflows and analyzing performance metrics, the study quantifies the improvements
achieved through BIM integration, such as reductions in error margins, cost estima-
tion accuracy, and project delays. The combination of qualitative and quantitative
methods ensures a holistic evaluation, balancing real-world applicability with empiri-
cal rigor.

Accurate and comprehensive data collection is critical to the success of the pro-
posed BIM integration framework. The study focuses on two primary types of data:
mine surveying data (geospatial) [17, 18] and geotechnical data [19, 20], both of
which are essential for creating detailed and functional BIM models.

Mine surveying data encompasses geospatial information about the physical char-
acteristics and spatial relationships of mining sites. To collect high-resolution geospa-
tial data, the study employs advanced surveying technologies, including:

1. LiDAR (Light Detection and Ranging) systems use laser pulses to generate
precise point clouds of mining sites, capturing detailed topographic features, surface
deformations, and infrastructure layouts. LiDAR is particularly effective for large-
scale open-pit mines, where high accuracy is required over expansive areas.

2. GPS (Global Positioning System):receivers are used to establish accurate coor-
dinates for key mine features, such as boundaries, excavation zones, and equipment
locations. GPS ensures geospatial data aligns with global reference systems, facilitat-
ing integration into BIM models.
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3. Drones equipped with high-resolution cameras capture aerial imagery, which is
processed using photogrammetry software to create models and orthomosaics. This
method is cost-effective and versatile, enabling frequent updates of dynamic mining
environments.

These technologies collectively provide a robust dataset for constructing BIM
models, ensuring that spatial data is both accurate and up-to-date.

Geotechnical data provides critical insights into the subsurface conditions of min-
ing sites, informing decisions about excavation, stability, and safety. The study col-
lects geotechnical data through:

1. Boreholes are drilled at strategic locations across the mining site to extract core
samples and measure in-situ properties, such as rock strength, density, and porosity.
Geophysical logging tools are used to assess subsurface stratigraphy and identify po-
tential geological hazards.

2. Core samples undergo laboratory analysis to determine mechanical properties,
including compressive strength, shear strength, and elasticity. These tests provide
quantitative data for modeling soil and rock behavior under mining-induced stresses.

3. Techniques such as cone penetration testing (CPT) and standard penetration
testing (SPT) are used to evaluate soil and rock stability directly at the site, comple-
menting laboratory results.

The combination of borehole logging, laboratory tests, and in-situ testing ensures
a comprehensive understanding of geotechnical conditions, which is essential for in-
tegrating subsurface data into BIM models.

The integration of mine surveying and geotechnical data into BIM models relies
on specialized software platforms designed for modeling, data management, and in-
teroperability. The study utilizes the following BIM tools:

1. Autodesk Revit is a widely used BIM platform that supports the creation of de-
tailed models with embedded data on geometry, materials, and project schedules. In
this study, Revit is used to model surface and subsurface mine features, integrating
geospatial and geotechnical data into a unified framework.

2. Bentley OpenRoads is tailored for infrastructure projects, including mining,
and excels in handling large-scale geospatial datasets. It is used to process LiDAR
and GPS data, ensuring accurate representation of terrain and mine layouts in BIM
models.

3. Trimble Tekla is employed for detailed structural modeling and geotechnical
analysis, particularly for underground mines. Its ability to handle complex geometries
and material properties makes it ideal for integrating geotechnical data into BIM
workflows.

The study uses licensed software platforms to ensure robust BIM integration (Ta-
ble 1). These tools are selected for their compatibility with Industry Foundation Clas-
ses (IFC) standards [ISO 16739-1:2018].

The study introduces several scientific innovations that advance the field of BIM
integration in mining, addressing gaps in existing methodologies and technologies.
These novelties include:
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One of the primary challenges in BIM integration is the lack of standardized pro-
tocols for converting heterogeneous mine surveying data into formats compatible
with BIM platforms. This study develops a novel protocol based on the Industry
Foundation Classes (IFC) standard, which defines a universal schema for data ex-
change. The protocol outlines a step-by-step process for transforming LiDAR point
clouds, GPS coordinates, and geotechnical datasets into IFC-compliant files, ensuring
seamless integration into BIM models. This innovation enhances data interoperability
and reduces errors associated with manual data conversion.

Table 1: Software Tools and Their Roles

Software Version License Role

Tool

Autodesk 2024 | Commercial | Processing and filtering LiDAR point clouds to remove
Recap noise and prepare data for BIM integration.

Autodesk 2024 | Commercial | Creating parametric BIM models of mine infrastructure,
Revit incorporating geospatial and geotechnical data.

Bentley 2023 | Commercial | Aligning geospatial data with BIM models and enabling
OpenRoads real-time data streaming for monitoring.

Trimble 2023 | Commercial | Modeling structural components, such as support systems,
Tekla with geotechnical data for stability analysis.

Traditional BIM models are static, requiring manual updates to reflect changes in
project conditions. This study introduces real-time data streaming, where geospatial
and geotechnical data are continuously fed into BIM models using IoT-enabled sen-
sors and cloud-based platforms. For example, GPS-equipped machinery and ground-
monitoring sensors provide live updates on excavation progress and ground stability,
which are automatically incorporated into the BIM model. This dynamic approach
enables real-time monitoring and decision-making, a significant advancement over
conventional static modeling techniques.

To enhance safety and risk management, the study employs machine learn-
ing (ML) algorithms to analyze integrated BIM data and predict geological risks,
such as rockfalls, subsidence, or fault activation. By training ML models on historical
geospatial and geotechnical datasets, the study identifies patterns associated with
hazardous conditions. These models are integrated into the BIM framework, provid-
ing predictive insights that allow project managers to implement proactive mitigation
measures. This application of ML represents a cutting-edge contribution to the min-
ing industry’s digital transformation (fig.1).

Quantitative evaluation of the integration framework is conducted through soft-
ware simulations, which replicate the data workflows and assess the efficiency of
BIM integration. The simulation setup includes:

1. LiDAR, GPS, and geotechnical data are processed using software like Bentley
OpenRoads and Autodesk Civil to generate models and datasets compatible with
BIM platforms.

2. The standardized protocol is implemented to convert processed data into IFC
formats, which are then imported into Autodesk Revit and Trimble Tekla for BIM
modeling.
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3. Simulations measure key performance indicators, such as data conversion time,
model accuracy (compared to ground-truth measurements), and computational effi-
ciency. Real-time data streaming is tested using cloud-based platforms to evaluate
latency and update frequency.

4. ML algorithms are applied to simulated datasets to predict geological risks,
with accuracy assessed against known hazard events from the case studies.

-
¢ Data Collection: Acquisition of geospatial data using LiDAR, GPS, and drone-

based photogrammetry, alongside geotechnical data from borehole logging. Raw
\ Datasets

-
e Data Processing: Filtering of LIDAR point clouds to remove noise and analysis

of geotechnical data to extract material properties. Processed
\. Data

.
¢ BIM Integration: Conversion of processed data into Industry Foundation
Classes (IFC) format and incorporation into 3D BIM models.

Integrated

\,

-
¢ Visualization: Generation of real-time monitoring dashboards to display
dynamic updates of the mining site.

\,

Figure 1 — Process of integrating mine surveying data into BIM models

The simulations are conducted on high-performance computing systems to handle
the large datasets typical of mining projects. Results from the simulations provide
empirical evidence of the framework’s effectiveness, complementing the qualitative
insights from the case studies.

The integration of mine surveying data into Building Information Modeling sys-
tems (fig. 2) for mining project management requires a robust methodological ap-
proach to ensure both practical applicability and scientific rigor. The methodology
leverages technologies and approaches to address the challenges of data integration
and enhance mining project outcomes.

To comprehensively evaluate the integration of mine surveying data into BIM
models, a mixed-methods approach is adopted, combining qualitative and quantita-
tive research techniques. The qualitative component involves case studies of real-
world mining projects to explore the practical challenges and benefits of BIM inte-
gration. The quantitative component includes software simulations to measure the
accuracy, efficiency, and scalability of the proposed integration framework. The ef-
fectiveness of the framework is evaluated using a weighted score:

S=w;-Q+w,-N, (1)

where S — overall score of the integration framework’s effectiveness; O — qualitative
score based on case study insights (e.g., stakeholder satisfaction, rated 0-1);
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N — quantitative score based on simulation metrics (e.g., accuracy improvement,
normalized to 0-1); w;,w, — weighting factors (w; + w, =1).

+Input:
+Geospatial data (LiDAR pointclouds, GPS coordinates, DEMs) Geotechnical data (borehole logs, material
properties) Output: BIM model with integrated data

+Initialize:
«Set software platforms (Autodesk Revit, Bentley QpenRoads, Trimble Tekla)
+[Define IFC scherma for data interoperabil ity

+Data Collection:
+Collect zeospatial data using LIiDAR, GPS, and drones
«Collectgeotechnical datawvia borehole logging and laboratory tests
+Store dataintemporary database J

+Data Preprocessing ™
+Filter LIDAR point clouds using Gaussian noise filter
+Alizn GPS coordinates to global reference system

« Convert geotechnical datato IFC-compatible attributes J

+Data Conversion:
+Transform point clouds tomesh usingAutodesk Recap
+Iap geotechnical propertiesto IFC classes
+Export datato IFCformat y.

+HBM Model Creation: ™
«|mport IFC data into Autodesk Revit
+Generate model of mine infrastructure
*|ntegrate geotechnical dataforsubsurface lavers J

+ Real-Time Updates:
+«Connect |oT sensors to BIM platformvia cloud
*itream geospatial and geotechnical updates
+Refresh BIM model at frequency f= 170t y.

+Risk Prediction: ™
+Train ML rodel (random forest) on historical data
+Predictzeological risks(e.g., subsidence, rockfalls)
*Embed predictions inBIM model as alerts J

+ Output:
+Save BIM model with intezrated data
+Exportvisualizationsfor stakeholder review

L { € € € € { € { ¢

Figure 2 — Integration of Mine Surveying Data into BIM Models

This equation, developed by the authors based on mixed-methods evaluation prin-
ciples [17], formalizes the integration of qualitative and quantitative findings, with
weights adjusted based on project priorities adjusted based on the relative importance
of qualitative vs. quantitative findings (e.g., w; =0.4, w, =0.6).
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Geospatial data are collected using LiDAR, GPS, and drone-based photogramme-
try. LIDAR point cloud density is modeled as:

D=—F, )

where D — the density (points/m?); N ,— number of points in the point cloud; 4 — sur-

face area of the scanned region (m?).

This equation, standard in surveying [6], quantifies data resolution. Geotechnical
data are collected via borehole logging and laboratory tests, with shear strength mod-
eled using the Mohr-Coulomb criterion [19].

For example, a LiDAR scan of an open-pit mine with 10 million points over
50,000 m? yields a density of D =200 point/m?, sufficient for detailed modeling. GPS
is used to georeference the point clouds, ensuring spatial accuracy with an error mar-
gin of less than 5 cm. Drone-based photogrammetry complements LiDAR by provid-
ing high-resolution aerial imagery, which is processed to generate digital elevation
models (DEMs). The photogrammetric reconstruction error is calculated as:

Zn:(zi - Zref)2

— /=1
Ep_ : 7 > (3)

where E,, — root mean square error of the DEM; z; — elevation of point i in the
DEM; z,,, — reference elevation from ground truth data; n — Number of points sam-

pled.

Geotechnical data, including soil and rock mechanics properties, are collected
through borehole logging and laboratory tests. Borehole logging provides data on
stratigraphy and material properties, such as compressive strength (o) and Young’s

modulus (£). Laboratory tests measure parameters like shear strength (7) using the
Mohr-Coulomb criterion:

r=c+otang, 4)

where 7 — shear strength (Pa); ¢ — cohesion (Pa); o — normal stress (Pa); ¢ — angle

of internal friction (degrees).

These parameters are critical for assessing ground stability and are integrated into
BIM models as attribute data for geological layers. Data collection is conducted at
two mining sites (open-pit and underground) to ensure diversity in geological condi-
tions.

The integration of mine surveying and geotechnical data into BIM models relies
on industry-standard software platforms, including Autodesk Revit, Bentley Open-
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Roads, and Trimble Tekla. Autodesk Revit is used for creating parametric models of
mine infrastructure, such as tunnels and processing facilities. Bentley OpenRoads
supports geospatial data integration, enabling the alignment of LiDAR point clouds
with BIM models. Trimble Tekla is employed for detailed modeling of structural
components, incorporating geotechnical data to simulate load-bearing capacities.

The study introduces a standardized IFC-based protocol for data conversion, real-
time data streaming, and machine learning for risk prediction. The data conversion
process is modeled as:

M ppy =T(Dy,Dyg), (5)

where M pp, — BIM model; D

N

— surveying data (e.g., point clouds, DEMs);
D, — geotechnical data (e.g., material properties); T — transformation function (e.g.,

[FC-based data mapping).

The study introduces several scientific advancements to enhance BIM integration
in mining:

1. Standardized Protocol for Data Conversion: A novel protocol is developed to
convert mine surveying data into BIM-compatible formats, such as IFC. The protocol
involves preprocessing point clouds to reduce noise, aligning geospatial and geotech-
nical data, and mapping attributes to IFC classes. The preprocessing step uses a noise
filter based on the Gaussian distribution:

(x—p)?
e 207, (6)

P =———
2no

where P(x) — probability density of point x; ; — mean position of neighboring points;
o — standard deviation of point deviations.

Points with low probability are flagged as noise and removed, improving model
accuracy.

2. Real-Time Data Streaming: The study implements real-time data streaming to
enable dynamic updates in BIM models. This involves loT-enabled sensors that
transmit geospatial and geotechnical data to a cloud-based BIM platform. The update
frequency is modeled as:

f u=— (7)
where f,, —update frequency (Hz); At — time interval between updates (seconds).

For example, a Af of 60 seconds yields an update frequency of f,=0.0167 Hz,
sufficient for monitoring ground movements.



ISSN 1607-4556 (Print), ISSN 2309-6004 (Online) Geo-Technical Mechanics. 2024. Ne 171 121

3. Machine Learning for Risk Prediction: Machine learning algorithms, specifical-
ly random forests, are used to predict geological risks (e.g., rockfalls, subsidence)
based on integrated data. The model is trained on features like rock strength, fault
proximity, and historical incident data. The prediction accuracy is evaluated using the
F1-score:

Fle Precision - Recall

(8)

Precision + Recall’

where Precision — ratio of correct positive predictions to total positive predictions;
Recall — ratio of correct positive predictions to total actual positives.

Two mining projects are selected to test the integration framework: an open-pit
copper mine and an underground coal mine. The open-pit mine provides a large-
scale, surface-based context with complex topography, while the underground mine
involves confined spaces and intricate geotechnical challenges. Both projects are ana-
lyzed for data integration efficiency, model accuracy, and operational improvements.
The case studies are evaluated using a performance index:

P=a-A+p-E+y-T, 9)

where P — performance index; 4 — model accuracy (e.g., error reduction percentage);
E — efficiency (e.g., processing time reduction); 7' — operational impact (e.g., cost sav-
ings percentage); «, f,y — weighting factors (¢ + f+y =1).

Software simulations are conducted to assess the efficiency of the data integration
workflow. The simulation environment uses Autodesk Revit and Bentley OpenRoads
to process synthetic datasets mimicking real-world conditions. The workflow in-
cludes:

1. Importing LiDAR point clouds and geotechnical data.

2. Converting data to IFC format using the proposed protocol.

3. Generating BIM models with real-time updates.

4. Evaluating model accuracy and processing time.

The simulation efficiency is quantified as:

p=rd, (10)
Tgim

where 7 — efficiency ratio; 7;,,, — processing time using traditional methods;
Ty — processing time using the BIM-integrated approach.

Key indicators used in the study are summarized in Table 2, providing clarity on
their units, ranges, and significance.
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Table 2 — Characteristics of Key Indicators
Indicator Symbol Unit Typical Range Significance
) ) ) Measures LiDAR resolution for
2 —
Point Cloud Density D points/m 100-500 high-precision 3D modeling.
3 Quantifies vertical accuracy of
DEM Error Erits m 0.05-0.2 digital elevation models (DEMs).
Shear Strength r Pa | 50,000-200,000 | Critical for assessing soil stability
in excavation and slope design.
Determines real-time monitoring
Update Frequency f Hz 0.01-0.1 capability for dynamic geotech-
nical systems.
Prediction Accuracy K — 0.8-0.95 Evaluates m?Chl.ne learning model
performance in risk assessment.

Simulations are run for multiple scenarios (e.g., varying point cloud sizes, update
frequencies) to ensure robustness. The results inform the optimization of the integra-
tion framework, addressing bottlenecks such as data conversion latency.

This methodological approach, with its blend of advanced technologies, mathe-
matical formalizations, and scientific novelties, provides a comprehensive foundation
for evaluating the integration of mine surveying data into BIM models, paving the
way for transformative advancements in mining project management.

3. Results and discussion

The study analyzes two mining projects: an open-pit copper mine and an under-
ground coal mine. The open-pit copper mine, located in a region with rugged topog-
raphy, spans 2 km? with a maximum depth of 300 m. It features complex surface fea-
tures, including benches (15-20 m high) and haul roads, with an annual production
rate of 500,000 tonnes of copper ore. Geotechnical challenges include unstable slopes
(cohesion: 50 kPa, friction angle: 30°). The underground coal mine, at a depth of
400-600 m, covers 1.5 km* with coal seams 2—-3 m thick. It faces geotechnical risks
from fault zones (shear strength: 100 kPa) and requires extensive support structures.

The integration of mine surveying data into BIM models was successfully imple-
mented for both case studies, demonstrating significant improvements across multiple
project metrics. The framework effectively combined geospatial data (from LiDAR,
GPS, and drone-based photogrammetry) and geotechnical data (from borehole log-
ging and laboratory tests) into cohesive BIM models, enabling enhanced visualization
and decision-making.

The geological models generated through BIM integration achieved a notable re-
duction in error margins, ranging from 15% to 20% compared to traditional surveying
methods. For the open-pit mine (fig. 3), the integration of high-density LiDAR point
clouds with geotechnical data reduced topographic errors from an average of 25 cm
to 5—7 cm, ensuring precise representation of surface features. In the underground
mine (fig. 4), the alignment of borehole data with spatial models improved the accu-
racy of fault and seam mapping, reducing positional errors by 18% on average. This
enhanced accuracy was critical for planning excavation routes and identifying geo-
logical hazards.
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Cost estimation accuracy improved by 10-12% due to the enhanced data visuali-
zation capabilities of BIM models. In the open-pit case, the integration of volumetric
data from digital elevation models allowed for more accurate calculations of material
extraction quantities, reducing cost overruns by 11%. For the underground mine,
BIM models incorporating geotechnical properties enabled better forecasting of sup-
port structure requirements, improving budget estimates by 10%. The ability to visu-
alize and analyze data in a unified platform minimized discrepancies between plan-
ning and execution phases.

Real-time monitoring capabilities facilitated by BIM integration led to an 8% re-
duction in project delays. In the open-pit mine, loT-enabled sensors provided contin-
uous updates on ground movements, allowing project managers to adjust operations
proactively and avoid delays caused by unexpected terrain shifts. In the underground
mine, real-time data streaming supported dynamic updates to tunnel models, reducing
downtime due to misaligned drilling by 7.5%. These improvements underscored the
value of dynamic BIM models in maintaining project schedules.
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The results (fig. 5) demonstrate the transformative potential of integrating mine
surveying data into BIM models for mining project management. The following dis-
cussion explores the benefits, challenges, and comparative advantages of this ap-
proach, contextualizing the findings within the broader mining industry.

The BIM-based approach significantly improved collaboration among stakehold-
ers, including surveyors, engineers, and project managers. By centralizing geospatial
and geotechnical data in a single platform, the framework enabled seamless data shar-
ing and reduced communication gaps. For instance, in the open-pit mine, real-time
access to updated models allowed engineers to coordinate with equipment operators
more effectively, optimizing excavation workflows.
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Figure 5 — Percentage Improvements in Project Outcomes

Enhanced safety was another key benefit, driven by improved risk visualization.
The BIM models highlighted geological hazards, such as unstable slopes in the open-
pit mine and fault zones in the underground mine, enabling proactive mitigation
measures. For example, the underground mine case study identified a high-risk fault
zone, prompting the installation of additional support structures, which prevented a
potential collapse.

Streamlined project workflows were also a significant advantage. The integration
of real-time data reduced the need for manual data reconciliation, saving time and
minimizing errors. In both case studies, the use of BIM models as digital twins facili-
tated scenario simulations, such as testing alternative excavation plans, which im-
proved operational efficiency and resource allocation.

Despite its benefits, the implementation of BIM in mining faced several challeng-
es. The high initial costs of BIM adoption, including software licenses, hardware up-
grades, and training programs, posed a barrier, particularly for smaller mining opera-
tions. In the case studies, the upfront investment was offset by long-term savings, but
the initial financial burden remained a concern.

The need for skilled personnel was another challenge. Effective BIM integration
required expertise in both mine surveying and BIM software, which was scarce
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among the project teams. Training programs were implemented, but the learning
curve delayed full adoption in the early stages of the projects. This highlights the im-
portance of capacity building for successful BIM implementation.

Data compatibility issues also arose, particularly when integrating legacy survey-
ing data with modern BIM platforms. In the underground mine, older borehole logs
stored in non-standard formats required extensive preprocessing to align with IFC
standards, increasing project setup time. These challenges underscore the need for
standardized data protocols across the mining industry.

The BIM-based approach outperformed traditional surveying methods in terms of
precision and scalability. Traditional methods, reliant on 2D maps and manual data
aggregation, often resulted in errors due to incomplete or misaligned datasets. In con-
trast, BIM models provided a comprehensive, view of mining sites, reducing errors
and enabling more accurate planning. For example, the open-pit mine’s traditional
surveys underestimated material volumes by 15%, while BIM models corrected this
to within 3% of actual values (table 3).

Table 3 — Comparison of Traditional Surveying vs. BIM-Integrated Approach

Metric Traditional Surveying BIM-Integrated Approach
Accuracy (Error Margin) 25 cm 5-7 cm
Processing Time 5 days 2 days
Cost Overrun 15% 3%

Scalability (Dataset Size) 1 GB 10 GB

Scalability was another advantage. Traditional methods struggled to handle large
datasets, such as high-density LiDAR point clouds, leading to processing delays. The
BIM framework, supported by cloud-based platforms, efficiently managed large da-
tasets and supported real-time updates, making it suitable for both small and large-
scale projects. This scalability was particularly evident in the underground mine,
where the BIM model integrated multiple data layers (e.g., geotechnical, structural)
without performance degradation.

4. Conclusions

The proposed framework successfully integrates mine surveying data, including
geospatial and geotechnical information, into BIM models, significantly enhancing
the management of mining projects. The application of this approach across the open-
pit copper mine and underground coal mine case studies demonstrated its practical
utility, delivering measurable improvements in project execution and oversight. The
framework’s ability to consolidate diverse datasets into a unified model has proven to
be a robust solution for addressing the complexities of modern mining operations.

Key benefits identified include enhanced accuracy in geological modeling, with
error margins reduced by 15-20%, leading to more reliable planning and design. Cost
savings were achieved through improved cost estimation accuracy (10-12%), mini-
mizing financial overruns, while real-time monitoring capabilities reduced project
delays by 8%. These outcomes highlight the framework’s potential to optimize re-
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source allocation, enhance safety through risk visualization, and streamline work-
flows across stakeholder groups.

Despite these advantages, challenges such as high initial implementation costs
and the need for skilled personnel were evident. These obstacles can be mitigated
through a phased implementation strategy, allowing mining companies to gradually
adopt BIM tools and infrastructure. Additionally, targeted capacity-building pro-
grams, including training for surveyors and engineers, can address the skills gap, en-
suring long-term sustainability and adoption of the framework.
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IHTErPALIA MAPKLLEMAEPCHKUX JAHUX Y BIM-MOOENI ANl EGEKTUBHOIO YMPABIIHHS
FNPHMYOOOBYBHMMU NMPOEKTAMU
Kopossika €., 3abonomHa HO., NaweHko O., Pacusemaes B.

AHorTauisi. [ipH1Ya NPOMMCIIOBICTb CTUKAETLCA 3i 3DOCTAKYO CKMAAHICTIO yNpaBniHHS NpoeKTaMn Yepe3 noTpedy B TOYHOMY
MnnaHyBaHHi, ePEKTUBHOMY BUKOHAHHI Ta CYBOPOMY MOHITOPUHIY [nsi 3abe3neveHHs Oe3neku, NpOAYKTMBHOCTI Ta €KOMNOriYHOI
BIAMOBIOHOCTI, OfHaK iHTErpaLis PisHOMaHITHUX JXepen OaHuX Yy eauHy CUCTEMY 3amnuILaeTbCs BUKNUKOM. Lis cTatTa gocnimkye
iHTerpaLilo MapKLLIenaepcbkux AaHux y cucTemu iHdopmadinHoro MoaentoBaHHs BypisHuytaa (BIM) sk TpaHcdopmayinHui nigxig
ONS BOOCKOHANEHHs YNpaBiHHA ripHN40400YBHUMW NpOeKTamu, 30CepemXylounch Ha BiZKPUTUX Kap'epax Ta Nig3eMHMX LuaxTtax.
JocnimxeHHst po3rnsiaae BUKIMKA NOEAHAHHS Te0npOCTOPOBUX JaHuX, 0TpuMaHux 3a gonomoroto LIDAR, GPS Ta dotorpammeTpii 3
BIJIA, 3 reoTexHiuHumMKM gaHuMu 3 OypiHHS cBepanoBuH y BIM-CTpykTypax Ans NOKPaLLEHHs MnaHyBaHHS,, BUKOHaHHS Ta
MOHITOPUHTY NPOEKTIB Y FiPHWYIA NPOMWUCNOBOCTI. BUKOPUCTOBYIOUM NEpeaoBi MapKLWeRLepCbki TEXHOMOrII, Taki SK BMCOKOTOYHI
TaxeOMETPW Ta nNasepHe CkaHyBaHHs, pasoMm i3 BIM-iHcTpymeHTamu, Takumn sk Autodesk Revit Ta Bentley OpenRoads,
3anpornoHoBaHa MeTopornoria 3abesnevye iHTerpalilo AaHuX Yy peanbHOMYy Yaci, CMpUSIioYM KpaloMy NPUAHATTIO pilleHb Ta
onepawiiHiin edekTuBHOCTI. [JocnimKeHHs 3aCTOCOBYE 3MilUaHUIA METOAWYHMIA MigXid, BKMIOYauWM Keic-CTadi MigHoOro kap'epy Ta
BYTiNbHOI LWaXTK, a TaKoX MporpamHe MOZentoBaHHs y nnatdopmax, Takux sik Agisoft Metashape ans MogentoBaHHs, o6 OLiHATY
edheKTUBHICTb Npouecy iHTerpaLii. PeaynbTaTii NokasykTb 3Ha4Hi NOKpaLLEHHS: NIABULLEHHS TOYHOCTI NPOeKTIB Ha 15-20% 3aBasiku
TOYHOMY FEO0NOrMYHOMY MOZEMIOBAHHIO, NOKPALUEHHS OLiHKM BUTPaT Ha 10-12% LWnAXOM 3MEHLLEHHS BIOMXETHUX NepeBuLLEHb Ta
MOKpaLLEHHs ynpaeniHHsA pusnkamu Ha 30% 4epes BUSIBMEHHS 30H BMCOKOTO PU3MKY, TakuX Sk HeCTabinbHi cxumu. BigsHauyeni
BMKITWKM, 30kpema npobnemu 3 iHTeponepabenbHICTI0 4aHuX Mix Mapkwerngepcokumn popmatamu ta BIM-nnatcpopmamu, a Takox
BMCOKi MOYaTKOBi BUTPATW Ha NporpamHe 3abe3neyeHHs Ta HaBYaHHs. CTaTTa 3aBepLUyeTbCs NPaKTUYHUMKM PEKOMEHAALSMU LWOA0
BnpoBazkeHHs BIM y ripHuyiit cnpasi, TakuMu ik MoeTanHe BMPOBaKEHHS Ta MpOrpaMu HaBYaHHS MEPCOHany, Ta OKPECMHe
nepecnekTMBM NS MojanblmX LOCTigXeHb, BKMKOYaluM aBTomMatusauito pobouux npouecie 3a [OMOMOrow poboTu3oBaHoi
asTomaTtu3alii (RPA) Ta aHaniTMKy Ha OCHOBI LUTYYHOTO iHTEMEKTY AN MPOrHO3yBaHHS PW3MKiB, WoO e Ginble onTuMidyBaTh
onepaujii Ta nigeuwmuTy Besneky y ripHUYiA NPOMUCIOBOCTI.

KniouoBi cnoBa: mapkwerigepis, BIM (iHcbopmayiiHe mogentoBaHHs OyaiBens), ynpaBniHHA ripHnioL06yBHUMW NpoeKTamu,
reonpocToOpOBi AaHi, reoTexHiYHi AaHi, iHTerpauia AaHux, LudpoBi ABIMHUKMA, MOJENOBAHHS, MOHITOPUHT Y pearibHOMY 4aci,
onepaLjiiHa ePeKTMBHICTb.
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